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ABSTRACT: This paper describes a kinetic theory of the crystallization of nanoparticles, where nanoparticles are dissolving
and crystals are forming in solution. The theory assumes that a crystal nucleates only on a nanoparticle, the crystal stops growing
at a certain size, and the concentration of metal ion in solution is close to the solubility of the nanoparticles. On the basis of these
assumptions, we have derived integral equations for R(¢) (crystal ratio as a function of time). We have solved the integral
equations with a successive approximation method. When time 7 is less than ,pec (= Fmax/G, 'max = maximum radius of crystal,
G = growth rate of crystal), R(?) is close to the 4th power of time; when ¢ is larger than f,p.c, R(?) is close to an exponential-type
function. The kinetic theory has been applied successfully to the transformation of ferrihydrite nanoparticles to goethite or
hematite crystals and the crystallization of TiO, and ZrO,. The theory shows that the nucleation rate of the crystal essentially
determines the crystallization rate and that an induction period is observed when the growth of the crystal is slow.

Introduction

The crystallization of colloidal nanoparticles (amorphous or
poorly crystallized materials) in solution has been studied in
many important systems. In particular, the transformation of
ferrihydrite (5Fe,O5 - 9H,0) nanoparticles to goethite (FeOOH)
or hematite (Fe,O) crystals has been investigated at various
temperatures and pHs.' 7 This is because ferrihydrite nanopar-
ticles are environmentally important: these nanoparticles are
commonly observed in hot springs, mine drainages, and soils
and adsorb many kinds of toxic elements such as Zn, Cu, As, U,
and Pu.®"1 The transformation of silica nanoparticles to quartz
is also important for understanding the genesis of silica depo-
sits." The transformation of silica nanoparticles to silicalite crys-
tals'"*"17 and the crystallizations of TiO,'*!” and Zr0,? nano-
particles have been studied because these crystals have useful
properties and are synthesized from nanoparticles. Silicalite is
used for the storage and separation of CO, and CH,”' TiO,
crystal has a photocatalytic property,” and ZrO, fine crystal is
used for the raw materials for partially stabilized zirconia.”

Crystallization curves showing the crystal ratio as a func-
tion of time have been measured for the transformation of
ferrihydrite to goethite or hematite,' > silica nanoparticles to
quartz,® TiO, nanoparticles to TiO, crystals,'” and ZrO,
nanoparticles to ZrO, crystals.?® These crystallization curves
have similar shapes. First, the concentrations of nanoparticles
decrease exponentially. In particular, the transformation
curve of ferrihydrite by Schwertmann et al.” is very close to
an exponential curve. Second, induction periods are observed
in some of the crystallization curves for ferrihydrite,>” TiO»,"
and Zr0O,>° nanoparticles.

Kinetic theories or models based on nucleation and growth
mechanisms were applied to the crystallization of nanoparti-
cles. Calculated values based on Avrami theory®*2° fit fairly
well with some experimental data of the crystallization of
nanoparticles in solution. The Avrami theory has been, how-
ever, proposed for the crystallization of condensed matter
such as glass, amorphous alloy, and melt but not for the
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crystallization of nanoparticles in solution. Therefore, even if
the crystallization curve of Avrami theory fits with experi-
mental data of nanoparticle crystallization in solution, its
parameters have no physical meaning. Zhang et al. have
proposed a kinetic theory for crystallization of nanoparticles
in dry conditions, which successfully explains the crystalliza-
tion rate of TiO, nanoparticles.?” This theory assumes that a
crystal stops growing at a certain size and that the growth rate
is infinite. As a result, a crystal reaches a maximum size just
after the crystal nucleates. Although this assumption can be
applied to some cases, the assumption oversimplifies the
condition when the growth of the crystal is slow.

This paper describes a new theory on the crystallization rate
of nanoparticles in solution. The theory is based on a nuclea-
tion and growth mechanism and assumes that both nucleation
and growth rates are finite and a crystal stops growing at a
certain size. On the basis of these assumptions, we have
derived integral equations for the crystal ratio. Solving the
integral equations, we have calculated the crystal ratio as a
function of time. Our theory shows how the rates of nuclea-
tion and crystal growth contribute to the crystallization rate
and well explains previous experimental data on the crystal-
lization rates of nanoparticles including the exponential de-
crease of nanoparticles and the presence of an induction
period. The theory also shows the methods to control the
crystallization rate and the size of crystals.

Theoretical Section

The theory considers the crystallization rate of nanoparticles in
solution. For simplicity, we derive equations in a M—O—H system,
where M denotes a metal element. In this system, nanoparticles
(MOJ(OH)y) are floating and dissolving in the solution, and crys-
tals (MO.(OH)y) are forming in the solution. We assume that a crys-
tal nucleates only on a nanoparticle (first assumption) and that
the crystal stops growing at a certain size (second assumption). We
also assume that X (concentration of metal in solution) is close to
Xhano-eq (solubility of nanoparticle) (third assumption). On the basis
of these assumptions, we have derived integral equations for R
(crystal ratio, that is, ratio of metal in the crystal to metal in the
whole system). Solving the integral equations, we show how R
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Table 1. List of Symbols”

symbol unit definition
b l/linﬂec
ﬁ T/tinﬂec
Dc]ose ‘Jforn1il17',nilno-diss0]‘/Jnano-dissol

ms”! radial growth rate of crystal (dr/dr)

1 s coefficient of nucleation rate (nucleation rate per nanoparticle)
Jdisssol mols™ ' L™! dissolution rate of crystals
Jrormat mols™ ' L™! formation rate of crystals

Jnano-dissol mols ' L™! dissolution rate of nanoparticles
m 2s”! coefficient of dissolution (or formation) rate of crystals
Knano m s coefficient of dissolution (or formation) rate of nanoparticles
m mol amount of metal ion in one crystal with a maximum size
Mpano mol amount of metal ion in one nanoparticle
M mol L™! moles of metal ion in all crystals in 1 L of solution
M pano mol L™! moles of metal ion in all nanoparticles in 1 L of solution
N L! number of crystals in 1 L of solution
Nead Lt number of crystals that finish growing in 1 L of solution
Npano Lt number of nanoparticles in 1 L of solution
P (1/G)(mniyano)rmax, parameter that determines the shape of R
I m radius of a crystal
Fmax m radius of a crystal with maximum size
Fnano m radius of a nanoparticle
R crystal ratio (ratio of metal ion in crystals to metal ion in the whole system)
Ry Initial approximate equation of R
R, first approximate equation of R
R, second approximate equation of R
Riano nanoparticle ratio (ratio of metal ion in nanoparticles to metal ion in the whole system)
m’L! surface area of crystals that are growing in 1 L of solution
Sdead m> L™} surface area of crystals that finish growing in 1 L of solution
Shano m>L™! surface area of nanoparticles in 1 L of solution
t s time
T s time at the nucleation of a crystal
linduc S induction period
tinflec S time at the inflection point
v m’ mol™! molar volume of metal ion in crystals
Vimax m’ volume of a crystal with maximum size
Vnano m> mol™! molar volume of metal ion in nanoparticles
V m*L7! total volume of crystals in 1 L of solution
Xeq mol L™! solubility of crystal in terms of metal concentration
nano-cq mol L™! solubility of nanoparticle in terms of metal concentration
Xsol mol L™! concentration of metal ion in solution
mol L™! concentration of metal ion in crystals
Xnano mol L™! concentration of metal ion in nanoparticles
Xicady mol L™! concentration of metal ion in solution in a steady state

“Symbols used in the main text and in appendices.

changes with time. Table 1 lists symbols and their definitions used in
the main text and the appendices.

Integral equations for R. Generally, the formation rate of crystal
is proportional to the surface area of the crystal and the degree of
supersaturation.”® We can approximate that the degree of super-
saturation is constant because we have assumed that X, is always
close to Xpano-eq (third assumption). Then, the formation rate of the
crystal is proportional only to the surface area of the crystal. The
surface area of the crystal can be calculated from the nucleation and
growth rates of the crystal.

On the basis of the above considerations, we here derive the
integral equations that show how R increases with time. We
assume that the crystals are spherical for simplicity. The radial
growth rate of crystal, G = dr/d¢, has a nonzero constant value
as long as ris less than ry,,x, and the value becomes zero when r=
I'max- Because X, is always close to Xyano-eq, 1 (the coefficient of
nucleation rate) can be approximated to be constant and indepen-
dent of time. The nucleation rate is given by IN,,,, because the
nucleation rate is proportional to N,.,, (the number of nano-
particles) (first assumption). A crystal nucleating at time 7 stops
growing at time T + fiqec (finflec = F'max/G)- Then, at a later time ¢
(t = 0 when the first crystal nucleates), a crystal that nucleates
at time 7 has a volume 4s/3{(r — 1’)G}3 when 1—7 < finflec and a
volume 4:7/3(rmax)3 when ¢ — 7 = fipee. As shown later, R has an
inflection point when ¢ = #;,q... The number of crystals nucleated
between time 7 and 7 + dt is given by /Na,0(7) d7. As a result, the
total volume of crystals that nucleated between time r and 7+ dr is

given by
dr = 4?'7[{(1‘— T)G}31Nnano(‘[) dr (1= T=<finflec)
()
4
dr = g("max)31N11uno(r) dr (t = T2 tinfiec)

Although we assumed that crystals are spherical for simplicity, our
theory can treat crystals not only with spherical morphology but also
with other morphologies. For example, the volume of a rectangular
prism with growth rates of G, G,, and G. for the directions of x, y, and
z, respectively, can be also expressed with eqs 1 by setting G =
(6G.G,G.[n) /3. By integrating eqs 1 and converting the volume of
crystals to R (see Appendix A), we obtain equations

b
R(twich) = p / (b= {1 - R(taneeB)} 4B (0=b=1)

0 b—1
R(tinﬂecb) = p[A {1 - R(Zinﬂecﬁ)} dﬂ

b
+ / (b= {1 = R(tme)} 48] (12)  (2)

-1

where b = t/tippee and f = T/tinge.. We assume here that X
(concentration of metal ion in solution) is negligible compared with
the amounts of M ions in nanoparticles and crystals, then we can
approximate that R + Ry, = 1. Parameter p is given by

P = 1(rmax/G) (1 /Miano) (3)
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where m is the moles of metal ion in one crystal with a maximum size
and n1y,,, 15 the moles of metal ion in one nanoparticle.

Solution When p Is Close to Zero. This is the case when no induc-
tion period is observed. Because p=0,0<b—f<land0<1—R=1,
integrals in eqs 2 whose intervals are one or less than one are negligible.
Therefore, eqs 2 are approximated by

R(tinﬂccb) = 0
R(tinﬂecb) = D /

IA

- (0=bh=1)
{1 = R(tinnec) } dB - (1=D) @)

.Ob
p /0 (1= Rltuef)} B

Combining eqs 4, we obtain an integral equation when p is close to zero:

b
R(tiec) = p /0 (=Rt} 4B (0=b)  (5)

I

Differentiating of eq 5 gives a differential equation:

AR (tinflech
R ) (©
db
Solving eq 6, we obtain the equation for crystal ratio as a function of time:
R(t) = 1 —exp(— pt/tinfiec) (7)

The value of p/tinec can be determined from the gradient of In(1 —
R(?)) because In(1 — R(7)) = —(p/tinfec)?. Once we obtain the value of
P/tinfiee; We can calculate the values of R using eq 7.

Solution When p Is Not Close to Zero. This is the case when an
induction period is observed. The approximate equations of R for
small b values are derived with a successive approximation method
using eqs 2, and the values of R for large b are approximated with an
exponential-type function. The successive approximation method
starts with an initial approximate equation (R, = 0). Weset Ry = 0
because R is zero when b = 0 and close to zero when b is close to
zero. Substituting Ry into R in the right sides of eqs 2, we obtain first
approximate equations:

Rl pb4/4 = p(t/linl]ec)4/4 (05])51)
Ri = p(b—=0.75) = p(t/tinnec —0.75)  (1=b=1.75)

(®)

We set the range of b less than 1.75 because the error of R becomes
large when b is larger than 1.75. For b values larger than 1.75, we
approximate R with an exponential-type function:

Ry = 1—Aexp{—B(b—1.75)}
= 1 —Aexp{ — B(t/tinficc — 1.75)} (1.75=b)  (9)

The parameters 4 and B are determined so as to connect smoothly
witheqgs 8 at 1.75 of b. As a result, we have obtained the values of the
parameters as follows:
A
B

I=p

p/(1=p) (19
We can estimate the values of #,q.. and p by fitting a straight line
with experimental data points having b values between 1.00 and 1.75.
The straight line corresponds to the second equation of egs 8. Time at
the intersection of the straight line with the vertical axis (R = 0) gives
a value of fquc (Figure 2). The second equation of eqs 8 shows that
tinflec = 4/3tmduc, which enables us to calculate the value of #,ge.. The
gradient of the straight line gives a value of p/f;,qec from which we can
calculate the value of p.

Once we obtain the values of #,n.. and p, we can calculate the values
of Rusing eqs 8 and 9. Figure 1 shows the errors for the first and second
approximate equations. Because the errors of the first approximate
equations are <0.025 when p < 0.5 (Figure la), the first approximate
equations are accurate enough for R calculations for p < 0.5. However,
when p > 0.5, the errors can be larger than 0.025. Therefore, the second
approximate equations (Appendix B) should be used for p > 0.5; the
errors of the second approximate equations are <0.02 in all ranges of p
and R (Figure 1b). When we need extremely accurate calculated values
of R, we can use a numerical calculation method (Appendix C).

Physical Meanings of R. Figure 2 shows a general trend of R
variation as a function of time, and Figure 3 schematically shows
how nucleation and growth rates affect R variation. When the
reaction starts (t =0), the first crystal nucleates in solution. As time
proceeds, many crystals nucleate on nanoparticles and grow. When
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Figure 1. Contours of errors of R for the first (a) and the second (b)
approximate equations. Dashed curves represent the R—p relation-
ships when » = 1.00, 1.75, and 2.5. The errors were obtained from
the differences in R values between the approximations (the main
text and Appendix B) and the numerical calculations (Appendix C).
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Figure 2. R variation as a function of time in the crystallization of
nanoparticles. At first, R increases with the 4th power of time. Just
after the inflection point, the curve shape becomes close to an
exponential-type function.

0 < 1 < tippee, Rincreases approximately with the 4th power of time.
This is because the volume of a crystal increases with the 3rd power
of time and the number of crystals increases linearly with time.
When t = f,q1ec, the first nucleated crystal grows to the maximum
size (r = rpax) and starts to deposit. Note that fi,pec (= rmax/G) 18
inversely proportional to G. We can calculate the value of G from
the values of #;,fec and ry.«. Figure 3b demonstrates that with a two-
times higher growth rate, #;,n.. becomes a half and the formation
rate does not change. At the inflection point, the surface area of
growing crystals (active surface area) and the transformation rate
are the largest. In other words, d2R/dt2 > 0when 0 < ¢ < f;f1ee, and
dzR/dt2 < 0 when #;,qe. < 1. After the inflection point, the crystal-
lization curve becomes close to an exponential-type function, and
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Figure 3. Schematic diagrams showing how the nucleation and growth
rates affect f,n.. and crystallization rate: (a) a reference case, (b) the
growth rate is two-times higher than the reference case, and (c) the
nucleation rate is two-times higher than the reference case. The open
symbols indicate growing crystals and the crossed ones indicate non-
growing crystals. The figure should be read in such a way that crystal
no. 1 (the number along the vertical axis) nucleates, grows, and stops
growing with time; the total number of crystals at a given time can also
be schematically indicated by the vertical axis. The two-times higher
growth rate reduces the inflection time by half but does not change the
crystallization rate (b). The two-times higher nucleation rate increases
the crystallization rate by a factor of 2 (c).

the crystallization rate decreases with time (Figure 2). This is
because the nucleation rate decreases as the number of nanoparti-
cles decreases with time.

The value of dR/d¢ at the inflection point (# = fiuec) 1S calculated
from a first approximate equation (eqs 8):
dR(1)

dr

__p _m (11)

linflec Mnano

1= linflec

Equation 11 shows that the transformation rate at the inflection point is
proportional to mi/m,.,, and I. Note that the transformation rate
depends on 7 and is independent of G. Figure 3c demonstrates that the
two-times higher nucleation rate makes the formation rate two-times
higher. We can conclude that the nucleation rate essentially determines
the crystallization rate. Equation 11 also shows that we can calculate
the value of 7 from the values of p/f; e and m/nyane.

Figure 4 shows variations of R for different p, where the unit of time is
normalized so that the gradients of R at the inflection point are one,
indicating that the value of p determines the shape of R. When pis 4, the
function is very close to the 4th power of time. As p decreases, f;,gc and
R(tinec) decrease. When p < 0.05, £, becomes negligible and the
shape of R is close to the exponential curve (= 1 — exp(—pt/tinfiec))-

Application

Figure 5a shows the experimental data of ferrihydrite at pH
6 and 297 K by Schwertmann et al.? The quantities of crystals
were measured with an oxalate dissolution method, and thus
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Figure 4. R for various p, where the unit of time is normalized so that
the gradients of R at the inflection point are one. When p is four, the
function is very close to the 4th power of time. As the p decreases, the
values of £, and R(fpec) decrease. When p is < 0.05, the function is
very close to the exponential curve [= 1 — exp(—pt/tinfiec)]-

the errors of the data points will be small. The data show that R
increases exponentially, and no induction period is observed.
In other words, the time at the inflection point is close to zero or
p is close to zero, which indicates that we can apply eq 7 to the
experimental data by Schwertmann et al.2 The value of D/tinflec
(= 42 x 107 day ") were determined from the gradient of
In{1 — R(7)} as described in the Theoretical Section. Substitu-
ting the value of p/#;,pec into eq 7, we obtain an equation, R(f) =
1 — exp(—4.2 x 10737) (rin days). This equation fits the experi-
mental data excellently (solid curve in Figure 5a).

Figure 5b shows the experimental data of ferrihydrite at pH
10.7 and 361 K by Shaw et al.” The quantities of crystals floating
in solution were directly measured with an X-ray diffraction
method. This avoided the preferred orientation and reduced the
errors of the measurement. The shape of the transformation
curve differs from that by Schwertmann et al.;* the transforma-
tion curve by Shaw et al.” has an induction period, whereas that
by Schwertmann et al.? does not. Figure 5b shows that nine data
points shown by gray circles are fitted with a straight line. This
straight line determined fingue and fingec as 2.23 x 10° and 2.97 x
10° s, respectively, with a method described in the Theoretical
Section. Shaw et al® assumed (or considered) that all ferrihydrite
was finally transformed to crystals, that is, final R =1 in their
experiment. To re-examine their final R value, we calculated
transformation curves assuming the final R value to be 1.0, 0.9,
0.8, 0.7, 0.65, and 0.6. The solid curve in Figure 5b is a trans-
formation curve with 0.65 as a final R value and fits very well
with the experimental data. We determined p/fipgec = 9.8 X
107 s~ ! from the gradient of the straight line and p = 0.29 from
the values of fi,nec and p/tingee-

Figure 5c¢,d shows experimental data of TiO, % and Zr0,,%°
respectively. The quantities of crystals were measured with an
X-ray diffraction method. Because of the preferred orienta-
tion, the errors of the data points can be larger than those by
Schwertmann et al.> and Shaw et al.” The procedures to obtain
calculated R variations and the parameters were as same as
that for the experimental data by Shaw et al.” The calculated R
values fit the data well for both cases. The errors of the
calculated values of p and #;,q.. Will not be small because the
number of the data points used for the parameter determina-
tion are small (four for TiO, and two for ZrO,) and because
the crystal ratios measured with an X-ray diffraction method
may have errors arising from preferred orientation.



3600 Crystal Growth & Design, Vol. 10, No. 8, 2010

1.0

R
0.5
ferrihydrite
0.0 . .
0 5 10 15
Time (102 days)
1.0 T T
(c)
R 05 Induction a
’ period (¢, =52 hours)
Tio,
0.0 :
(] 2 4 6
Time (102 hours)

Tsukimura et al.

1.0 T T

(b)

Induction period
(t,,4.c= 2200 seconds)

p=0.29

05 .
[ €—>]
ferrihydrite
0.0 L L
(] 5 10 15
Time (10% seconds)
1.0

Induction
period (t

induc

0.5 =13 hours) _

ZrOo

1 1
0 5 10 15

Time (10 hours)

Figure 5. Relation between observed and calculated values of R: (a) the transformation of ferrihydrite at pH 6 and 297 K by Schwertmann
etal., (b) the transformation of ferrihydrite at pH 10.7 and 361 K by Shaw et al.,” (c) the crystallization of TiO, at pH 1 and 473 K.,'® and (d) the
crystallization of ZrO» at pH 0.5 and 383 K.?° Circles denote experimental data points and solid curves calculated values based on the present
theory. Data points in gray symbols were used for the determination of parameters p and finfec (= */3findue) (see Theoretical Section).

We assume that errors in panels ¢ and d are £10% of R.
Discussion

Applicability of the Theory. Our theory well explains the
experimental data for the transformation rates of ferrihy-
drite, TiO», and ZrO,, including the exponential decrease of
nanoparticles and the presence of induction period. This is
because we have accurately described the processes of the
crystallization and have made the proper assumptions.

The first assumption is that the crystals nucleate only on
nanoparticles. Generally, the nucleation on a solid surface via
heterogeneous nucleation is easier than homogeneous nuclea-
tion in a free space in solution, while homogeneous nucleation
is possible at much higher supersaturation.”® For example, ice
dose not nucleate in a free space in air and nucleates only on
clay particles or sea salts if the temperature is close to the
freezing point.?’ The observation with a transmission electron
microscope showed that the core of goethite formed in the
transformation experiment of ferrihydrite is poorly ordered
materials,” which implies that part of the poorly ordered mate-
rials can be ferrihydrite. Hematite forms only in the aggregates
of ferrihydrite,' which supports the nucleation of hematite only
on ferrihydrite. Therefore, the assumption of the nucleation of
a crystal only on a nanoparticle is reasonable.

The second assumption is that the crystals stop growing at a
certain size. This was also assumed in the theory of Zhang et al.
on the basis of the observation of TiO, crystals.>” Transforma-
tion experiments of ferrihydrite nanoparticles showed that most

hematite and goethite crystals are about 50 to 100 nm in size.”
This also suggests that these crystals stop growing at about 50—
100 nm. This seems to be related to the deposition of crystals;
particles of goethite or hematite larger than 50 nm can deposit,
but particles less than 50 nm float in solution, which will be well
explained by our calculations that consider the experimental
conditions of Schwertmann et al.> The calculated results are
shown in Figure 6a,b for the depth distributions of particles as a
function of diameter in equilibrium in 100- and 1-mm height
solutions, respectively, and in Figure 6¢ for the time required for
a particle to fall by 1, 10, and 100 mm in solution assuming that
the density of particles is 4.3 (the density of goethite). The equi-
librium depth distribution of particles obeys the Boltzmann dis-
tribution, and the fall rate of a particle obeys the Stokes’ law.
When the diameters of particles are less than 10 nm (Figure 6a)
and 50 nm (Figure 6b), the particles are homogeneously dis-
tributed throughout solutions, and the particles never deposit at
the bottom. Therefore, the particles less than 10 nm in diameter
can continue to grow in a bottle of 100 mm height, and the parti-
cles less than 50 nm can do so in a bottle of 1 mm height. On the
other hand, 99% of particles are present within the lower 1 mm
depth for particles of 100 nm in diameter in solution with 100
mm height (Figure 6a). Particles of 100 nm in diameter fall by
100 mm in 73 days (Figure 6¢c). Consequently, our calculations
well explain why the crystal size given by Schwertmann et al.? is
less than 100 nm. On the other hand, the crystals for the trans-
formation experiment by Shaw et al.” are 1 order of magnitude
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goethite particle to fall by 1, 10, and 100 mm in solution as a function of
particle size. The dashed lines in panel ¢ show that a particle does not fall
by a given depth, for example, particles of < 100 nm never fall by 10 mm.

larger than those by Schwertmann et al.”> Schwertmann et al.? did
not stir the solution, and their sampling interval was a few hun-
dred days. In contrast, Shaw et al.’ stirred the solution, and their
experimental periods were shorter, which prevented the deposit
of small crystals and made crystals grow larger in the solution.

The third assumption is that X, (the concentration of M
in solution) is close to Xpuno-oq (the solubility of nanopar-
ticle). Giving an example for the transformation of ferrihy-
drite, we demonstrate that this assumption is valid. The
assumption is deducted from dissolution rates and surface
areas of nanoparticles and crystals using the relation

Jnano-dissol = Jformat ( 12)

If Xso11s zero, eq 12 is valid. When Xyano-eq 1s small, Jyano-
dissol becomes approximately equal to Jyomae in very short
time (Appendix D). The formation rate of crystals and the
dissolution rate of nanoparticles are given by

Jformat = kS(Xsol_Xeq) (13)

Jnano-dissol - knano Snano (Xnemo—eq - Xsol)

where Jgissoi = —Jrormar. Note that the surface area of
crystals that stop growing is not included in S. When both
crystals and nanoparticles are dissolved in pure water, the
dissolution rates of crystals and nanoparticles are given by

Jdissol = kSXeq (14)

Jhnano-dissol = knanoSnanOXnano—eq

The dissolution experiments of ferrihydrite, goethite, and
hematite in pure water show that the ratio of (Jhano-dissol/
Shano)/(Jdissol/S) 18 in the range between 8.8 x 10 and
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2.4 x 10°.*° The calculation based on the thermodynamic
database by Naumov et al.*! shows that the ratio of X, nano-cq/
Xeq 1s 200 when the nanoparticle is ferrihydrite and the
crystalis goethite. In this case, k.n0/k 1s in the range between
0.88 and 12. Using eqs 12 and 13, we obtain the relation

0.88(Snan0/S) < (Xvsol - Xeq)/(Xnano—eq - Xsol)
< 12(Snano /) (15)

Because Shano/S is larger than 28.0 for the transformation
of ferrihydrite when p < 0.5 (Appendix E), (X501 — Xeq)/
(Xnano-eq — Xso1) is larger than 24.6, and therefore, X
is approximately equal to Xyano-eq» Which is the third
assumption.

The relation of the activation energies between nucleation
and crystal growth, which are determined on the basis of the
theory, also supports the validity of the theory. The theory
indicates that the inflection time (Z;nfiec = Fmax/G) 18 inversely
proportional to the crystal growth rate (G), and that
dR(tinpec)/dt (the gradient of the transformation curve at
the inflection point) is proportional to I (nucleation rate
coefficient). From these relations, we have re-interpreted the
experimental results of the transformation of ferrihydrite
and have obtained the reasonable result that the activation
energy for nucleation is larger than that for crystal growth,
which is consistent with the relation of activation energies
between nucleation and crystal growth for condensed
matter.’>¥

Relation to Other Theories. Our theory is closely related to
the Avrami theory?*~?® and the theory by Zhang et al.”” The
Avrami theory is applied to the transformation rate of
metastable to stable phases and considers two processes,
nucleation and growth of nuclei. The shapes of the trans-
formation curves of Avrami theory resemble those of the
present theory. The R values can be approximated by the 4th
power of time in the initial state and, later, by exponential-
type functions for both theories. The Avrami equation is,
however, derived for the transformation of condensed mat-
ter such as glass, amorphous alloy, and melt, and it cannot be
applied to the transformation of nanoparticles in solution.
Although the Avrami equation [1 — exp(—k¢")] can fit experi-
mental data for the transformation of ferrihydrite as is
shown by Yee et al.” by changing the parameter », the mean-
ing of the value of n (for example, 1.55to 1.81in Yee et al.” is
unclear. The theory by Zhang et al. has been proposed for the
crystallization of nanoparticles in dry system and success-
fully explains the crystallization of TiO, nanoparticles.?’
This theory assumes that a crystal grows to a maximum size
in a very short time and thus cannot explain the presence of
induction period. On the other hand, we have successfully
explained the presence of induction period by taking account
of the effects of both nucleation and growth rates. Our theory
shows that the induction period is observed when the growth
of the crystal is slow compared with nucleation.

Prediction by the Present Theory. We have shown that the
rate-determining process of crystallization of nanoparticles
in solution is the nucleation of crystals, not the growth rate
of crystals (eq 11). Therefore, the effects of temperature,
pH, and impurities on nucleation rate are more impor-
tant than those on growth rate. Some impurities, such as
organic matter,*** silicon,*® phosphate,>*” and cadmium,*
decrease the transformation rate of ferrihydrite, while the
presence of divalent iron increases the transformation rate;’
impurities can retard or enhance the nucleation of crystals.
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Note that the transformation is retarded or enhanced by
impurities in solution but not in nanoparticles. Therefore, we
can stabilize nanoparticles by adding some kind of impurity
to the solution.

The value of p will increase with increasing temperature.
This is because the activation energy of nucleation will be
larger than that of crystal growth. This means that the value
of I/G increases with increasing temperature. Therefore,
the value of p [ = (I/G)rmax(m/mnano)] Will be large at high
temperatures. As a result, an induction period may be
observed at high temperatures even if no induction period
is observed at room temperature.

Some nonthermodynamic parameters such as the turbu-
lence of solution and the height of a bottle affect the
transformation rate of nanoparticles to crystals. If we stir a
solution as in the experiments by Shaw et al.” and Yee et al.,’
the transformation rate increases because the high turbu-
lence of the solution prevents crystals from depositing and
makes crystals stay in the solution and grow larger. Conse-
quently, the values of ry,, and m become larger, which in
turn makes the induction period and the transformation
rate larger because fingue= °/alinflec = - [a"max/G and dR/dt =
(m/mpano)I When 1= t;nec. In fact, the crystals formed in the
experiments with stirring® are 1 order of magnitude larger
than the crystals formed in the experiments without stirring.”
Ifa crystal grows 10 times larger in diameter with stirring than
a crystal doeswithout stirring, the transformation rate with
stirring becomes a thousand times higher than that without
stirring. The height of the bottle may also affect the transfor-
mation rate. Crystals 100 nm in diameter deposit in a bottle
with a height of 100 mm, but the crystals can float in a solution
with a height of 1 mm (Figures 5a,b, respectively). Therefore,
crystals in a short bottle can grow to large sizes, and thus the
crystallization rate is high for crystals in a short bottle.
Consequently, the theory shows that we should stir a solution
when we need to synthesize large crystals and that we should
use a tall bottle when we need to synthesize small crystals.

Formation of Nanoparticles. We have shown that hetero-
geneous nucleation (nucleation on nanoparticles) is impor-
tant for the crystallization of nanoparticles. Then, a question
arises how nanoparticles nucleate when no particle exists in
solution. These nanoparticles must nucleate homoge-
neously. The homogeneous nucleation needs high super-
saturation. For example, amorphous silica requires 30%
excess of equilibrium for homogeneous nucleation, and
quartz requires a supersaturation of a factor of 80.?® Ferri-
hydrite nanoparticles were also formed from a highly super-
saturated solution.” The nucleation rate is very fast when the
concentration is higher than a critical point, but nanoparti-
cles hardly nucleate when the concentration is lower than the
critical point.”® Therefore, nucleation of nanoparticles can
be completed in a short time in a highly supersaturated
solution. For example, the formation of ferrihydrite nano-
particles is completed in less than 5 min.*> Once nanoparti-
cles form, the concentration in the solution will decrease to
become close to the solubility of the nanoparticle as a result
of the growth of nanoparticles.

Conclusions

The present kinetic theory of the crystallization of nano-
particles has been developed assuming the following:
(1) crystals nucleate only on nanoparticles, (ii) the crystals stop
growing at a certain size, and (iii) the concentration of metal
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of the nanoparticles in solution is close to the solubility of the
nanoparticles. Our theory explains the crystallization rates of
reported experiments excellently including the exponential
decrease of nanoparticles and the presence of an induction
period. The calculated results are also consistent with other
experimental data such as the size of crystals and the dissolu-
tion rates of nanoparticles and crystals.

The crystallization rate of nanoparticles in solution is
proportional to the nucleation rate of crystals and is indepen-
dent of the growth rate of crystals. On the other hand, the
induction period is inversely proportional to the growth rate
of crystals.

Some nonthermodynamic parameters such as the turbu-
lence of solution and the size of system can also affect the
crystallization rate. For example, the stirring of solution
prevents crystals from depositing and makes the crystals grow
larger, which in turn makes the crystallization rate higher.

Acknowledgment. This work was partly supported by a
Grant-in-Aid of the Ministry of Education, Culture, Sports,
Science and Technology to T.M.

Appendix A

We here derive the integral equations for R and their
differentials. As shown in the text, the total volume of crystals
nucleating between time 7 and 7 4 dr is given by

4

v = %{(z—t)G}3]Nnano(T) dr (1= T=tinfec)
4

wo= 73

(rmax)3INnano(T) dr (t —T= tinﬂcc)

(A1)

Integrating dV from 0 to ¢, we obtain the total volume of
crystals:

Vi) = /0 r%{(z—r)c}%/vnm(r) dr (1= tinflec)

1= linflec A 3
Vi) = / “(tecG) INwano (1)1 7
0

+ \/j ?{(Z_T)G}SINnano(T)I dr (ZinﬂecSt) (A2)

— linflec

With conversion of the time parameters with ¢ = f;,q..0 and
T = tinfed> the volume of total crystals is given by

V(Zinﬂecb)

b
= Vmax[inﬂecl/ (b _ﬁ)SNnano(Zinﬂecﬂ) dﬁ (b§1)
0
b—1
V(Zinﬂecb) = Vmax[inflec[[/ Nnano(tinflecﬁ) dﬂ
0

b
+ / (b _ﬁ)3anmo(tnanoﬂ) dﬁ] (bZ 1) (A3)
b

-1

Because R + Ry =
initially, R is given by

1 and all metal is in nanoparticles

M(Iinﬂccb) o V(tinﬂccb)/v

R(tin ccb = =
( " ) M ano (0) Nnano (0)"”nan0
V([inﬂecb)/(vmax/m) m
= = inflec A4
anmo(o)mnano Nnano (O)Mnano Vmax V(Z : b) ( )
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Substituting eq A3 into eq A4, we obtain the following
equations:

b
R(linﬂecb) = p/O (b _ﬂ)3Rnan0(linfleCﬁ) dﬂ (bS 1)
b
= [ 0B~ Rims) 4
b—1
R(tinﬂecb) = P[/O Rnano(linﬂecﬁ) dﬁ

b
+ / (b _:8)3Rnano(tinﬂecﬂ) dﬁ} (bZI)
b—1
bh—1
ol 1= Rlnh)} 08
b
[ B R B (AS)
bh—1

Where]’ = [tinﬂecm/mnano = (I/G)(’n/mnano)rmax-

Next, we derive the differential of R. We here derive the
differentiation from the active surface area (the surface area of
growing crystals). The active surface area of crystals nucle-
ating between time 7 and 7 + dr is given by

ds = 4nl{(t—1)G}Y dr (1= T=linfiec)
ds = 0 ([ - TZtinﬂcc) (A6)

Integrating dS from 0 to 7, we obtain the active surface area of
crystals:

S(I) (tStinflec)

/t 4.7'[{(1_'[)G}2Nnano(r)1 dr
0

t
/ 470{ (1 — 7)G}* Nyano (1)1 AT (Linprec=<1)
1 — linflec

(A7)
tinﬂccb and 7 =

S(1)

Converting the time parameters with ¢ =
linflecD gives the active surface area as

b
47T(rmax)2tinﬂecl / (b - ﬁ)z X (bS 1)
0
Nnano([inﬂecﬁ) dﬂ

S(tinﬂecb) =

b
= 4'7T(rmax)2[inﬂecl {® _ﬂ)zx
0
Mnano ( tinfleclg) /mnano } dﬂ

b
= 47T(rmax)2tinﬂec {(b ﬁ)
Rnano ( tinflecﬂ) nano ( )/mnano} dﬁ

= 475("max)2 tinﬂecIMnemo ( /mnano X
b
/ (b - ﬁ)anano([inﬂecﬂ) dﬁ
0

b
4ﬂ(rmax)2[inﬂccl/ (b_ﬂ)zx (bZI)
b—1
Nnano([inﬂecﬁ) dﬂ

S([inﬂccb) =

b

= 47[("max)2tinﬂec1 {(b _ﬂ)zx
Mnano(tinﬂccﬂ)/mr[:a;c}} dﬁ
b
= 475("m‘1x)2[mﬂecl/ {(b ﬁ)

n'mo(lmﬂ«,cﬁ nano 60 /mnano} dg
= 47T(rmax) tinﬂec[Mnano( )/mnano X

b
~/b—l (b _‘B)anaHO(tinﬂecﬂ) dﬁ
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The differentiation of R is given by
dR(tinfiech) _ tint‘lecdR(t) _ linfiee dMyano(7)
db dt Mpano(0)  dr
tinflec dV(l) - tinflec dV(l) dr
M ano(0)v  dt Miano(0)y  dr dr

Tinflec Fmax
- % __ fmax A
Mnano (O)VS(Z)G Mnano (O) VS(I) ( 9)
By substituting eq A8 into eq A9, we obtain
dR lin| ecb b
% = [7/ (b ﬁ) nano(tinﬂecﬁ) dﬁ (bS l)
b
= /0 R(tinﬂecﬂ)] dﬁ
dR tin ccb b
% = 3[)/ b ﬂ) Rnano([mﬂecﬂ) dﬁ (b > 1)
b—1
b
- 3p/b ) b ﬁ) [] (tmﬂscﬂ)] dﬂ
(A10)
Appendix B

We here derive the second approximate equations using
integral eqs 2 and 8. When calculating the equations, we divide
the values of hinto threeranges (0 < < 1,1 <h<2,and 2 < b).
When 0 < b < 1, by substituting the first equation of eqs 8 into R
of the right-hand of the first equation of eqs 2, we obtain the
second approximation equation:

re=p [0 (1=06") a6=p [ 0-p7 a8
—%2/0'bﬂ4(b—ﬁ)3 dp= p[—(b_fﬂ:

B L5
405 27 8,

-0 (Bl

b
38" _B° _ bt p
4 1120

When | < b < 2, by substituting the eqs 8 into R of the right-
hand of the second equation of eqs 2, we obtain the second
approximate equation:

R —p[/()“(l—iﬁ“) dﬁ+/bll(b—ﬁ)3<l—iﬂ4) ap
+ [o-pfi-n(p-3)es] @

The first term in the parentheses of eq B2 is calculated to be

[ (-2 an=[-2] " = 6-1-Zo-ry
(B3)

The second term in the parentheses of eq B2 is calculated to be

/111 (b_ﬂ)3<1 _§ﬁ4) 4 = All (b—p) dp

o g giage |08
P pe-p dﬂ—[ . }

b—1

1
L A A ] A PR
4[5 ;T }7_1_4{1 (b=1)}
N
4< w4 s T2 7 (B4)
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The third term in the parentheses of eq B2 is calculated to be

/lb(b—ﬁf{l—p(b—%)}dﬂ
_ <1+{TP_,,;,) /lb(b—ﬁf dﬁ+p/lb(b—ﬁ)4dﬁ
(142 pb)[_u)—f)“ "M{_(b—smT
1 1

_ 4
_@ 41) = L ap* — 156* + 2007 -

Substituting eqs B3, B4, and B5 into eq B2, we obtain the second
approximate equation (1 < b < 2):

_ _3 8
Ry = p(b 4) +]12O(b
+ 560b* — 240b + 42) (B6)

When 2 < b, by substituting eqs 8 into R of the right-hand of the
second equation of eqs 2, we obtain the second approximate
equation:

e[y [ oo
[ o=prfi-(s-3)} ]
p[/o1 (125 aps [ 128} as
v [ (1+30=m) 0= 400"} ]
p{[ﬂ 2 } (1+3f)ﬁ—pfzy_l

b-p*  6-p°)
1+p pb) 1 —p 5 } }
b—1

AN =20 +7b—6)
20 4

106> +1)  (BS)

1125° + 420h* — 6720°

+

=P +b—2

1
80( 206 +31) + 4}

— (63 pz( 405 + 1206 — 93) (B7)
—P\"74) %0

In summary, the second approximate equations for 0 < » < 2.5
are

_ bt pt <b<
R= (0=b=1)
3 2
R, = (b —112b° + 420b* — 6725
2 p(b 4)+1120( b +420bh" — 672b

+560h* —240b +42) (1=h=<2)
2
Rzzp(b—§)+80( 40b° +120h—93)  (2<hH<2.5)

(B8)

We did not calculate the third approximate equations because
the second approximate equations are accurate enough for small
b values and because higher orders of approximate equations are
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not accurate enough for large b values, either, and are too com-
plicated.

For b values larger than 2.5, we approximate R with an
exponential-type function:

Ry = 1—Aexp][—B(b—2.5)] (2.5=b) (B9)

The parameters 4 and B are determined so as to connect
smoothly with eqs B8 at 2.5 of . As a result, we have obtained
the values of the parameters as follows:

A

0.5375p> — 1.75p + 1
_]72 +p
0.5375p> — 1.75p + 1

(B10)

Appendix C

We here show how the R values are calculated numerically.
The differential of R is given by

M = 31]/[)(1)_[3)2[1_R(tinﬂecﬁ)}dﬁ (0=b=1)

dR(lflb b) Ob

#ﬂm - 3P/H(b—ﬁ)z[l—R(rmmcﬂ)]dﬂ (1=b)
(c1)

See Appendix A for the derivation of eqs C1. Replacing b =
m/n (m and n are integers), eqs C1 are approximated to

dR(tinfiec m/n)

db

NS | /m i—05)\? i—0.5
- 3p<n);|:<n_ n ){1_R<tinﬂec n )}:| (mS}’l)
dR(finfiec m/n)

db

1 " m i—0.5\° i—0.5
3P<E>im§—:n+l|:(;_ . ){1—R(linﬂec . )}}(WZ”)

(€2)

On the other hand, the value of R(#,pec(m + 0.5)/n) can be
calculated from the values of R(fpec(m — 0.5)/n) and dR-
(tinfieen/n)/db with the following equation:

Rltee(m+0.5)/n) = R{tee(m —0.5)/n) + - W

(C3)

The value of R(0.5¢,../1) is set to zero. Using eqs C2 and C3
alternately, we have calculated the values of R and d R/db step by
step. Table C1 shows the values of R calculated with a program
made on an EXCEL sheet. We can obtain the values of R accu-
rately with this method if 7 is large enough; errors of R calcu-
lated with this method are less than 0.003 and 0.0001 for n= 10
and 50, respectively. Theses errors were estimated from the
difference of R between n = 10 and 50. Because the deviation
from a true value is inversely proportional to 77, the deviation
for the calculation with » = 10 is 25 times larger than that with
n=150. This means that the difference of R between n =10 and
n=>501s 24 times larger than the deviation of the calculation with
n=>50. We can obtain the deviation from a true value forn = 50
and n=10 by dividing the difference of R between =10 and 50
by 24 and 25/24, respectively.

Appendix D

We show here that Ji,mae can be very close to Jhano-dissol 1N
a short time. The degree of closeness between Jioma and
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Table C1. Numerically Calculated R Values for n = 10 and n = 50
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R
p =02 p =205 p =10

b n =10 n =50 diff. n =10 n =50 diff. n =10 n =50 diff.
0.15 0.00001 0.00002 —0.00001 0.00004 0.00006 —0.00002 0.00008 0.00012 —0.00005
0.25 0.00016 0.00019 —0.00003 0.00041 0.00049 —0.00007 0.00082 0.00097 —0.00015
0.35 0.00069 0.00075 —0.00006 0.00172 0.00187 —0.00014 0.00345 0.00374 —0.00029
0.45 0.00195 0.00205 —0.00010 0.00487 0.00512 —0.00024 0.00975 0.01023 —0.00048
0.55 0.00442 0.00457 —0.00014 0.01106 0.01142 —0.00036 0.02212 0.02284 —0.00072
0.65 0.00871 0.00892 —0.00020 0.02178 0.02229 —0.00050 0.04355 0.04456 —0.00101
0.75 0.01554 0.01581 —0.00027 0.03883 0.03950 —0.00067 0.07762 0.07896 —0.00134
0.85 0.02573 0.02608 —0.00034 0.06429 0.06515 —0.00086 0.12848 0.13019 —0.00171
0.95 0.04025 0.04068 —0.00043 0.10055 0.10162 —0.00107 0.20083 0.20295 —0.00212
1.05 0.06018 0.05996 0.00022 0.15025 0.14969 0.00056 0.29989 0.29873 0.00116
1.15 0.08007 0.07990 0.00017 0.19979 0.19934 0.00045 0.39829 0.39731 0.00097
1.25 0.09992 0.09979 0.00013 0.24904 0.24869 0.00035 0.49555 0.49473 0.00081
1.35 0.11970 0.11961 0.00008 0.29784 0.29758 0.00026 0.59098 0.59030 0.00068
1.45 0.13936 0.13932 0.00004 0.34594 0.34577 0.00017 0.68365 0.68309 0.00056
1.55 0.15888 0.15888 —0.00000 0.39307 0.39298 0.00008 0.77243 0.77198 0.00046
1.75 0.19721 0.19730 —0.00009 0.48306 0.48315 —0.00010 0.93303 0.93282 0.00021
2.05 0.25222 0.25246 —0.00023 0.60260 0.60308 —0.00048

2.55 0.33616 0.33663 —0.00047 0.75475 0.75584 —0.00109

3.05 0.41082 0.41149 —0.00066 0.85535 0.85677 —0.00142

4.05 0.54690 0.54783 —0.00093 0.96014 0.96139 —0.00126

5.05 0.64314 0.64417 —0.00103

6.05 0.71893 0.71998 —0.00105

7.05 0.77863 0.77964 —0.00101

8.05 0.82143 0.82238 —0.00095

9.05 0.85936 0.86022 —0.00086
10.05 0.88923 0.89000 —0.00077
Jnano-dissol 1S €xpressed by the equation Using eq D35, we can estimate the time needed for a small

_ ) Dgjose Value. For example, when pH is 6 and the temperature
Dclose _ |Jf0rmat Jnano-dlssoll (Dl) is 297 K,2

Jnano-dissol
Using eq D1, we can calculate the time needed for attaining a
small Djse Value (for example, Dgjose = 0.01).
First, we derive a function of X, (7). The differentiation of
X;o01(?) 1s given by

dXsol (t) anano _ dx

dr = = dr E: _knanOSnano(Xsol(Z)

- Xnano-eq) - kS(XSOI(t) - XCQ)

= = (knanoSnano + kS)Xsol(t) + knanoSnanOXnano—cq + kSch

(D2)
Solving differential eq D2, we obtain the equation
Xsol([) = (Xsol(to) - Xsteady) eXp[ - (knanOSnano
+kS)(l_ ZO)] +Xstcady (D3)

where X qi(%9) and Xycaqy are the concentrations of metal in solu-
tion in the initial and steady states, respectively, and Xcaay =
(knanosnanoX nano—eq+kSXeq)/ (knanoSnallo+kS ) Note that €q D3
is an exponential function, and therefore, the absolute value of
the gradient becomes smaller as time proceeds. Using this pro-
perty, we can estimate the value of | J,ano-dissol — Jformat| at time 1

‘Jnano-dissol(tl ) - Jformat(tl ) |

dXsol <
de ), |

Combining eqs D1 with eq D4, we obtain the relation

Xsol(ll) - Xsol([())

< Xnano—eq (D4)
nh—

T h—1

Xnano—eq (DS)

At=1t— Hh=
D closeJ nano-dissol

Xnanoeq = 32x107° [mol Lil]

(Do)
Jnanodissol = 1.67 x 10~ % [mol L™ ! day_l]
Substituting eq D6 and D = 0.01 into eq D5, we obtain Az
< 0.19 day. This is a very short time compared with the half-
life time of ferrihydrite (166 days) at pH 6 and 297 K,
indicating that Jgoma: becomes almost equal to Jyano-dissol
quickly.

Appendix E

We here calculate the ratio of the active surface area of
nanoparticles to that of crystals. The ratio is given by
Snano(t) _ Sdead(‘x’) Snano(t) (El)
S(t) S(t) Sdead(w)

where Sqeaq 18 the surface area of crystals that do not grow.
The first term of the right side of eq E1 is converted to

. t . 2
Saead () llgnw ffinﬂec 47t (rmax) "N (7)1 dt

SO, 4n{(t— 1)GY Noamo(0)]

(}"max)2 flgn f(;7 finfie N(T)I dr
. (= 0)G Nuano (1) de

(E2)

SubStituting Nnano(r) = MnanO(O)Rnano(T)/mnano into €q Ez?
we obtain

Sdead (oo) _ (rmax)2 tlgnm ‘/;:nﬂcc R(T) dr
S(t) ftt— finflec {([ - r)G}2Rnano(r) dr

(E3)
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Table E1. Values of Syan0/S

Smuw / s

b p=0.1 p=202 p =205 p=10
0.1 280 139 78.6 71.2
0.2 278 130 51.6 36.5
0.3 278 128 46.2 24.3
0.4 278 128 41.4 21.3
0.5 278 128 37.7 18.5
0.6 278 128 35.0 15.6
0.7 278 128 32.7 12.8
0.8 278 128 30.4 9.9
0.9 278 128 28.0 6.7
Converting parameters with 7 = #;,p.0 and 1 = fppech, We
obtain

. b

lim R(1; d

Sdead (°°) o f— oo fl ( mﬂccﬂ) ﬂ (E4)

S(tintech) — [7 (b= B)? R(tinecB) 4B
By approximating the equation with summation instead of
integration, we obtain

oo

R(tinfrec(i —0.5)/n
Sdead(e°) _ i=;+l (tonec )/n)
S(tinnech) S (mfn—(i—0.5)/1)* Ruano (finec i — 0.5) /)
i=m—n+1
(ES)
where b = m/n. The second term of eq El is
Snano(t) _ Snano(()) Rnano(l) _ 4n("nano)22Nnano(O)Rnano(l)
Sdead(‘”) Sdead(oo) 47!("max) Ndead(‘x’)
MndllO vndno
i e
rnano max ¥nan
Rnano(t) = MRnano(t)
) 2 M(eo)v TnanoV
47(rmax) ———————
(4”/3)(’ma>c)
(E6)
As a result, S;.n0/S 1s given by
Smmo([) _ i;l R([illﬂCC(l B 05)/”)
s() S mfn— (i = 0.5)/n)* Ruano (fmtec i — 0.5) /)
i=m—n+1
M vnanoRnano([) (E7)

ruano v

Assuming that the ratio of r,x (about 50—100 nm) to rnane
(about 5—10 nm) is 10 and the ratio of molar volumes
(Vnano/v) 1s one and using eq E7, we obtain the values of
Shano/S as functions of p and R (Table E1).
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